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A Covariance Inequality for Coherent Structures

by

Kumar Joag-Dev and Frank Proschan

ABSTRACT

hI this paper,9we extenda basic result in reliability theory. 4k

show that the S-shaped property of the reliability function holds when

the states of the components are associated; the earlier stronger hypothesis

of independence among component states is unnecessarily strong.
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0. INTRODUCTION AND NOTATION. An important inequality which is the basis for

proving that the reliability function is S-shaped is developed in Barlow

and Proschan (1981, Chapte. 2, Section 5). To describe it briefly, let

Xi, 1 1, ..., n, be performance indicating binary (values 0 or 1) random

* variables. As usual, Xi =1 indicates that the ith component is functioning

while X i =0 indicates that it is failed. Let X for (XI,. ..,Xn), and let

the binary function O(X) denote the performance indicator of a system with

the above n components. The function 0 is said to be coherent if

(1) 0 is coordinatewise nondecreasing, that is,

<'0

(ii) All n components are "relevant".

The ith component is said to be "relevant" if there exists at least one

configuration of the other (n-1) components such that the system is in the

failed state if the ith component is in the failed state and in the functioning

state otherwise.

In what follows we assume that X is "associated"; that is, for every

pair of coordinatewise nondecreasing functions (fg), defined on Rn -R,

(1) COV [f(X), g(X)] :O.

It is well known that if the Xi are mutually independent then X is

* associated.

The main inequality to be considered in this note is

(2) COY [zXi - 0(X),0(X)] >0.

Note that the nonstrict verAion of (2) follows easily from the fact that

ZXi - (x is coordinatewise nondecreasing in X, and X being associated implies

(1).

- * . • I - . . m. q - .* * . .. • * .



The approach in Barlow and Proschan (1981) assumes and uses independence

of the components in a crucial manner. As seen from the discussion above,

association seems to be the natural condition; we prove inequality (2) in

this more general setting.

Our approach is based on a result which states that if a bivariate

distribution exhibits "positive quadrant dependence", then uncorrelatedness

implies independence. Although the proof of this result needs several steps

(see Lehmann (1966)), a very simple proof will be presented for the discrete

distribution involved in our case.

In general, the present approach relies directly on the notions of

association, independence, and coherence. It is hoped that it will provide

a better insight.

1. RESULTS.

LEMMA. Suppose the pair (U,V) satisfies the "positive quadrant dependence"

(PQD) condition; that is,

(3) P[U u, V ul > P[U > u PV > v],

for every pair of reals (u,v). Then

COV [U,V] = 0 = U, V are independent.

The proof for the special case, relevant for our result, will be given

at the end.

REMARK. Suppose (U,V) is associated. Then in view of (1), it is clear

that (U,V) satisfies PQD condition (3).

THEOREM. Let 0 be a system with n ( 2) associated components X1, ..., Xn.

Further, suppose that 0 is coordinatewise nondecreasing and 0 < P[(X) =] < 1.

~2



Then

COV Xi - 0(X) 1 (X)]0 => Only one out of the n
~' components is relevant

for 0.

PROOF. In view of the Lemma and Remark above, EXi- (x), W(x) are independent.

Thus

(4) P[ (X) 0, EXi - 0(X) n-]= P[(X) =0] P[EX i- 0(X)=n-l],

(5) P10(x) = 1, EXi - 0(x) = 0] = P1e(x) = 1] P11X i - 0() = 0]

Due to the assumptions on 0,

zxi-- {I, = OW = {0

so that

k

(6) P[EXi- (X) = 0] _ P[ZXi - 0] h P[X1 = 0] > 0,
b'I

where the second inequality in (6) follows from the association of X.

Similarly,

(7) P[ZX i - O(X ) 
= n -1] > P[EX -n ] > 0.

From (6) and (7), it follows that the left sides of (4) and (5) are positive.

Hence,

(8) P[EXXi- (n-l), 0 ) 0]>0,

and

(9) P[EXi = 1, 0(0) 1] >0.

The inequality (9) tells us that there is a component j such that the

system works even if component j is the only working component. On the other



hand, (8) implies the existence of a component whose failure causes the

system failure, even if all other components are functioning. Due to the

nondecreasing character of 0, the latter component has to be J. Thus j is

the only relevent component as claimed.

PROOF OF LEMMA.

The pair (U,V) relevant for our Theorem is the pair for which the possible

values for U are 0, 1, ..., k; while the possible values for V are 0 or 1.

Writing Pil -- P(U=i,V=l), Pi = P(U=i), where i=l, ... , k, and r = P(V=l),

it follows that,

k k
(10) E(U) = JiPi=ai, E(V) = r,

11
k

where i--I Pj P(U>i).

J=i

Also,

k k

(11) E(UV) =ipil= 8i,

where

k

8I = P'l =P(U> iV=l).
J=i

Now the PQD property for U and V above yields

P(U> i, V=I) _P(U> i)P(V= i),

or equivalently,

(12) B >ral; i=l, .. ,k.

4
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In view of (10) and (11), the uncorrelatedness of U and V implies

k k
(13) Bi = ryli

1 1

Since ai and i are nonnegative, a strict inequality in (12) for some i,

would violate (13). Thus

= rci; i=l, .. , k.

Since V is binary, this implies the independence of U and V.
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